
Problem 5089. In 4ABC let AB = c, BC = a, CA = b, r = the in-radius
and Ra, rb and rc = the es-radii, respectively. Prove or disprove that
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)
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Let ∆ and s be the area and the semiperimeter of 4ABC, respectively. By
the well known trigonometrical identities: r = ∆

s , ra = ∆
s−a , rb = ∆

s−b and
rc = ∆

s−c we have
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and similar inequalities hold for cyclic permutations of a, b, c. Therefore, our
inequality is equivalent to
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According to AM-HM inequality we get
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Building up two similar inequalities and adding up all of them, we get (*)
and the conclusion follows. Equality holds for a = b = c. �
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