Problem 5089. In $\triangle A B C$ let $A B=c, B C=a, C A=b, r=$ the in-radius and R_{a}, r_{b} and $r_{c}=$ the es-radii, respectively. Prove or disprove that

$$
\frac{\left(r_{a}-r\right)\left(r_{b}+r_{c}\right)}{r_{a} r_{c}+r r_{b}}+\frac{\left(r_{c}-r\right)\left(r_{a}+r_{b}\right)}{r_{c} r_{b}+r r_{a}}+\frac{\left(r_{b}-r\right)\left(r_{c}+r_{a}\right)}{r_{b} r_{a}+r r_{c}} \geq 2\left(\frac{a b}{b^{2}+c a}+\frac{b c}{c^{2}+a b}+\frac{c a}{a^{2}+b c}\right)
$$

Proposed by Panagiote Ligouras, Alberobello, Italy
Solution by Ercole Suppa, Teramo, Italy
Let Δ and s be the area and the semiperimeter of $\triangle A B C$, respectively. By the well known trigonometrical identities: $r=\frac{\Delta}{s}, r_{a}=\frac{\Delta}{s-a}, r_{b}=\frac{\Delta}{s-b}$ and $r_{c}=\frac{\Delta}{s-c}$ we have

$$
\begin{aligned}
\frac{\left(r_{a}-r\right)\left(r_{b}+r_{c}\right)}{r_{a} r_{c}+r r_{b}} & =\frac{\left(\frac{\Delta}{s-a}-\frac{\Delta}{s}\right)\left(\frac{\Delta}{s-b}-\frac{\Delta}{s-c}\right)}{\frac{\Delta^{2}}{(s-a)(s-c)}+\frac{\Delta^{2}}{s(s-b)}}= \\
& =\frac{(s-s+a)(s-c+s-b)}{s(s-b)+(s-a)(s-c)}= \\
& =\frac{a^{2}}{s^{2}-s b+s^{2}-s c-s a+a c}= \\
& =\frac{a^{2}}{2 s^{2}-s(a+b+c)+a c}= \\
& =\frac{a^{2}}{2 s^{2}-2 s^{2}+a c}=\frac{a}{c}
\end{aligned}
$$

and similar inequalities hold for cyclic permutations of a, b, c. Therefore, our inequality is equivalent to

$$
\begin{equation*}
\frac{a}{c}+\frac{c}{b}+\frac{b}{a} \geq \frac{2 a b}{b^{2}+c a}+\frac{2 b c}{c^{2}+a b}+\frac{2 c a}{a^{2}+b c} \tag{*}
\end{equation*}
$$

According to AM-HM inequality we get

$$
\frac{\frac{b}{a}+\frac{c}{b}}{2} \geq \frac{2}{\frac{b}{a}+\frac{c}{b}}=\frac{2 a b}{b^{2}+c a}
$$

Building up two similar inequalities and adding up all of them, we get $\left(^{*}\right)$ and the conclusion follows. Equality holds for $a=b=c$.

